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Abstract
Graph Convolutional Networks (GCNs) have be-
come pivotal in recommendation systems for learn-
ing user and item embeddings by leveraging the
user-item interaction graph’s node information and
topology. However, these models often face the
famous over-smoothing issue, leading to indistinct
user and item embeddings and reduced personal-
ization. Traditional desmoothing methods in GCN-
based systems are model-specific, lacking a univer-
sal solution. This paper introduces a novel, model-
agnostic approach named Desmoothing Framework
for GCN-based Recommendation Systems (DGR).
It effectively addresses over-smoothing on general
GCN-based recommendation models by consider-
ing both global and local perspectives. Specifi-
cally, we first introduce vector perturbations dur-
ing each message passing layer to penalize the ten-
dency of node embeddings approximating overly
to be similar with the guidance of the global topo-
logical structure. Meanwhile, we further develop
a tailored-design loss term for the readout em-
beddings to preserve the local collaborative rela-
tions between users and their neighboring items.
In particular, items that exhibit a high correla-
tion with neighboring items are also incorporated
to enhance the local topological information. To
validate our approach, we conduct extensive ex-
periments on 5 benchmark datasets based on 5
well-known GCN-based recommendation models,
demonstrating the effectiveness and generalization
of our proposed framework. Our code is available
at https://github.com/me-sonandme/DGR.

1 Introduction
Personalized recommendation is a vital technology in various
domains, such as social media, e-commerce, and career rec-
ommendation, aiming to recommend items based on users’
interests by mining and matching the embeddings of users

∗Chao Wang and Yanyong Zhang are both corresponding authors

and candidate items [Wang et al., 2021b; Wang et al., 2021a;
Li et al., 2024]. The interaction information between users
and items can naturally be represented as a bipartite graph,
making Graph Convolutional Networks (GCNs) [He et al.,
2020] an effective approach to learning user and item em-
bedding vectors. Specifically, conventional GCN-based rec-
ommendation models, such as NGCF [Wang et al., 2019a],
LightGCN [He et al., 2020] and DGCF [Wang et al., 2020b]
exclusively leverage the message passing mechanism to ag-
gregate local information and directly incorporate the signals
captured from historical interaction data into the embedding
vectors, which have witnessed both the training efficiency and
better performance.

Unfortunately, as mentioned in [Chen et al., 2020b;
Liu et al., 2021; Chen et al., 2022a; Cai et al., 2023;
Zhou et al., 2023; Peng et al., 2022; Wang et al., 2023b;
Xia et al., 2023], GCN-based recommendation models face
the inherent over-smoothing problem, where all user and item
embeddings converge toward similarity during the message
passing process. It causes a failure in personalized recom-
mendation, resulting in the same recommendation results for
every user [Zhou et al., 2023]. Moreover, data in recom-
mendation systems are often highly sparse, making it more
difficult to model relationships between users and items due
to limited direct user-item interaction information. Conse-
quently, the existing GCN-based recommendation struggles
to accurately capture the differences in the fine-grained rela-
tionships among users and items.

Recently, significant efforts have been devoted to address-
ing the over-smoothing problem in GCN-based recommen-
dation. For example, many well-known GCN-based rec-
ommendation models, such as LightGCN [He et al., 2020]
and NGCF [Wang et al., 2019a], opt to incorporate out-
putted embeddings from each layer into the final readout
embeddings, preserving node information characteristics and
slightly alleviating the over-smoothing problem. Meanwhile,
there are also some works proposed to adjust the mes-
sage passing processes [He et al., 2023; Peng et al., 2022;
Liu et al., 2021] or adopt self-supervised learning to main-
tain the distinctiveness of user and item embeddings [Xia et
al., 2023; Xia et al., 2022; Cai et al., 2023; Wu et al., 2021;
Lin et al., 2022]. However, most of these approaches are
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specifically designed for individual models, leaving a strong
need for a general desmoothing framework in GCN-based
recommendation systems.

Indeed, to make full use of the sparse information from the
user-item interactions, it is essential to take into considera-
tion both the global and local topological perspectives with
model-free solutions. Specifically, on the one hand, with the
mathematical nature of the global topological structure, the
message passing mechanisms in existing GCN models often
lead to the rapid convergence of all node embeddings and
cause over-something. Therefore, the first challenge lies in
modifying the message passing layer to distinguish user item
embeddings. On the other hand, local collaborative relations,
which encourage similar embeddings for the neighbors, are
also critical for recommendation performance [Wang et al.,
2023a; Mao et al., 2021]. It is also challenging to mine those
collaborative signals from the local topological structure dur-
ing desmoothing process.

In this paper, we introduce the Desmoothing Framework
for GCN-based Recommendation Systems (DGR), a novel,
universally applicable, and easy-to-use approach to tackle the
over-smoothing problem from both global and local perspec-
tives and enhance personalized recommendation in GCN-
based recommendation systems. Our approach encompasses
two primary modules: Global Desmoothing Message Passing
(GMP) and Local Node Embedding Correction (LEC). The
GMP module is designed to counteract the global trend
of user and item embeddings approximating overly to the
limit state of infinite-layer graph convolutions, i.e., the over-
smoothing point. It introduces vector perturbations at each
layer to steer embeddings away from the over-smoothing
point. Simultaneously, the LEC module focuses on preserv-
ing and emphasizing the local collaborative signals, partic-
ularly in sparse data scenarios. It works by maintaining
local collaborative relationships between users and neigh-
boring items and incorporating highly correlated items to
strengthen the local topological information. Differing from
previous methods that targeted improvements in individual
GCN-based recommendation systems, our DGR framework
is a general, model-free solution, easily adaptable across var-
ious GCN-based models. To substantiate our claims, we
have rigorously tested DGR with five popular recommenda-
tion models across five public benchmark datasets. The re-
sults from these extensive experiments, along with several
case studies, have convincingly demonstrated the effective-
ness and broad applicability of our framework in enhancing
personalized recommendations in GCN-based systems.

2 Preliminaries
In this section, we first introduce the essential background
knowledge about GCN-based recommendation systems and
the concept of the over-smoothing point.

2.1 GCNs in Recommendation Systems
GCNs are the representative models for complex graph-
structured data [Wang et al., 2023c; Chen et al., 2022b;
Chen et al., 2022c] and have obtained great success in rec-
ommendation, where the interaction information between

users and items can naturally be represented as a bipartite
graph [Wu et al., 2024]. LightGCN is one of the foun-
dational frameworks for many GCN-based recommendation
models [Cai et al., 2023; Yu et al., 2023; Shuai et al., 2022].
It simplifies GCNs by eliminating non-linear feature trans-
formations, retaining only the message passing. Each layer is
defined as:

E(k+1) = ÃE(k) = Ã(k+1)E(0), (1)

where E(k) ∈ R(Nu+Ni)×T is the k-th layer node embedding
matrix, T is the embedding size, Nu and Ni denote the num-
ber of users and items, Ã ∈ R(Nu+Ni)×(Nu+Ni) is the nor-
malization of the adjacent matrix A of the user-item graph
with self-loop, i.e.,

Ã = D̂− 1
2AD̂− 1

2 , A =

(
INu R
RT INi

)
, (2)

where R ∈ RNu×Ni is the user-item interaction matrix, each
entry Rui is 1 if user u has interacted with item i otherwise
0. INu and INi are identity matrics with sizes of Nu and Ni,
respectively. D̂ is a (Nu+Ni)×(Nu+Ni) diagonal matrix, in
which each entry D̂ij denotes the number of nonzero entries
in the i-th row vector of the adjacency matrix A.

Note that, the initial definition of the LightGCN layer has
removed the self-loop connections on nodes. However, as the
original paper claims, the layer combination operation plays
a similar role by summing the weighted node embeddings at
each layer as the final output representation. Along this line,
we can rewrite the above message passing process for user
embedding eu and item embedding ei as follows,

e
(k+1)
u =

e(k)
u

du+1 +
∑

i∈Vu

e
(k)
i√

(du+1)(di+1)
,

e
(k+1)
i =

e
(k)
i

di+1 +
∑

i∈Vi

e(k)
u√

(di+1)(du+1)
,

(3)

where Vu and Vi denote the neighbor node set of user u and
item i with size of du and di, respectively. The readout node
embeddings eu and ei are the combination of embeddings
outputted by each message passing layer. Then, the model
prediction is defined as the inner product of user and item
final embedding representations:

ŷu,i = eu
⊺ei, (4)

which is used as the ranking score for recommendation.
Meanwhile, the Bayesian Personalized Ranking (BPR) loss is
employed, which is a pairwise loss that encourages the pos-
sibility of an observed interaction to be higher than its unob-
served counterparts, i.e.,

LBPR = −
∑

(u,i,j)∈D

log σ(ŷui − ŷuj), (5)

where σ(·) is the sigmoid function, D = {(u, i, j) |Ru,i =
1, Ru,j = 0} denotes to the pairwise training dataset, and j
denotes the sampled item that user u has not interacted with.
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Figure 1: Empirical analysis on the evolution of the embeddings
as the layer number of message-passing increases. It shows the
D(E(k),M) changes across the layer number k in the range [1, 20].

2.2 Over-Smoothing Point
However, the GCN-based recommendation usually suffers
performance degradation as the number of message pass-
ing layers k increases due to the well-known over-smoothing
problem [He et al., 2020; Wang et al., 2019b]. Specifically,
the node embedding ek (the row of E(k)) will all converge to
the corresponding final point when k tends to infinity, called
the over-smoothing point. Theoretically according to Theo-
rem 1 in [Chen et al., 2020c], we can derive that:

Ã∞
u,i = limk→∞Ãk

i,j =

√
(du + 1) (di + 1)

2Nedge +Ni +Nu
, (6)

where du,di represent the degrees of user node u and item
node i, respectively. Nedge is the total number of edges in the
user-item graph. We can then obtain Over-smoothing Steady
State Matrix M via:

M = limk→∞E(k) = Ã∞E(0), (7)

where we denote the over-smoothing point as m, which is
the row of M. According to [Chen et al., 2020c], the rows
of M are linearly correlated with each other. In other words,
the high-order power of normalized adjacent matrix Ã tends
to undergo a rank collapse as k increases.

Actually, in the context of recommendation, the over-
smoothing problem can be more serious due to the long tail
and the high sparsity. On the one hand, in the item-user graph,
most interactions occur on the popular users or items, which
have a higher degree than most common nodes. As a result,
with Equation 7, those nodes’ embeddings would converge
at a higher rate and have a stronger impact on pushing the
convergence of other nodes’ embeddings. On the other hand,
the high sparsity makes nodes interact more with local neigh-
borhoods, due to limited direct user-item interactions. As a
result, the node embeddings prefer to converge more rapidly.

To provide visual insights of the evolution of the node em-
beddings as the layer number of message-passing increases,
we conduct an empirical analysis on MovieLens1M dataset
in Figure 1 to illustrate the evolution of user or item embed-
dings during the message passing process. Specifically, we
calculate the distance between all node embeddings and over-
smoothing steady state matrix as follows:

D
(
E(k),M

)
=

1

n

∑
i∈[n]

∥∥∥e(k)i −mi

∥∥∥
2
, (8)

Figure 2: Illustration of the embedding vector updating in Global
Desmoothing Message Passing. The solid black line from e(0) to m
represents the original trajectory of the GCN.

where D
(
E(k),M

)
is the mean Euclidean distance between

the k-th layer node embeddings E(k) and over-smoothing
steady state matrix M. The e

(k)
i and mi are the i-th row of

E(k) and M respectively. Figure 1 shows a rapidly decreasing
trend as the layer k increases, indicating that node embed-
dings tend to converge towards the over-smoothing point as
the layer number of message-passing increases. This conver-
gence phenomenon poses a risk of recommendation failure.

3 Our Framework
In this section, we present the technical details of
our proposed Desmoothing Framework for GCN-based
Recommendation Systems (DGR). As shown in Figure 3, our
DGR model is a model-free approach and can be exploited
for enhancing various GCN-based recommendation sys-
tems by plugging into two components: Global Desmooth-
ing Message Passing (GMP) and Local Node Embedding
Correction (LEC), which prevents global user and item em-
beddings from over-smoothing point but maintain similarities
among their neighbor nodes. In the following, we will in-
troduce those two components respectively, with a necessary
analysis of the complexity.

3.1 Global Desmoothing Message Passing
As discussed in Section 2.2, due to the mathematical nature
of global topological structure, the embedding e(k) ∈ E(k)

of each user or item will converge to the corresponding over-
smoothing point m ∈ M as stacking GCN layers. As a re-
sult, each user or item embedding is linearly correlated with
each other and cannot be distinguished. To prevent the over-
smoothing problem, an effective way is to slow down the con-
vergence rate during each message passing step. Along this
line, we propose a simple but effective plug-in module after
each message passing layer to perturb the node embeddings
away from the final over-smoothing point. Figure 2 provides
an illustrative understanding of our proposed approach.

Specifically, the black curve represents the updating trajec-
tory of an embedding vector for a user or an item, approximat-
ing the over-smoothing point (the red point). After the k-th
original message passing steps, the node embedding evolves
from e(k−1) to ê(k) as Equation 3. We denote the updating
vector as a⃗ = ê(k) − e(k−1). It can be decomposed into
two orthogonal components b⃗ and c⃗, where b⃗ is parallel to
the direction of ek−1 − m and c⃗ is perpendicular to it. Intu-
itively, b⃗ pushes the embedding vector to the corresponding
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Figure 3: An illustration of DGR architecture. In the Global Desmoothing Message Passing component, user and item embeddings are put
away from the over-smoothing point to preserve node embedding distinctiveness. In the Local Node Embedding Correction component,
similar neighbor nodes like node i4 are aggregated together while the marginal nodes like node i5 is segregated in the local graph to utilize
the collaborative signals. In the readout phase, e(0) are also utilized, although they are not shown in the diagram for clarity.

over-smoothing point. Therefore, we punish the vector up-
dating in this direction with a parameter α:

e(k) = ê(k) − α(m− ê(k)) = (1 + α)ê(k) − αm,

ê(k) = AGG
(
e
(k−1)
j , {j ∈ N}

)
,

(9)

where N denotes the set of neighbor items or users, and
AGG denotes the aggregation operation defined in Equa-
tion 3. Note that b⃗ and m − ê(k) have the same direction
(without sign) but different scales. Here, we use the latter
to perturb the node embedding, abstaining from the use of
matrix orthogonal decomposition in the computation, which
enhances both robustness and usability.

Our approach to desmooth during message passing is char-
acterized by its simplicity and intuitive nature. In practice, it
has demonstrated remarkable effectiveness. Actually, we can
also validate the effectiveness with the following proposition.
Proposition 1. With the plug-in module defined in Equa-
tion 9, the distance between any node embedding e and the
corresponding over-smoothing point m would increase, i.e,

||e(k) −m||p > ||ê(k) −m||p, (10)

where || · ||p is the p-norm distance between vectors.
The proof is obvious by bringing Equation 9 into Equa-

tion 10. The above inequality suggests that our approach pre-
vents the collapse of user or item embeddings into the over-
smoothing point by increasing the distance between them.

3.2 Local Node Embedding Correction
In this subsection, we further focus on how to deal with the
over-smoothing problem from the local graph perspective.
Differently from the global view, the similarities between
some local neighbor nodes are beneficial for collaborative fil-
tering. It is challenging to maintain collaborative relations
from local user-item interactions while maintaining distinc-
tiveness among all node embeddings.

Here, we propose a general additional loss for GCN-based
recommendations to handle the local user and item embed-
ding learning process. Intuitively, the main idea is to preserve
the similarity of the readout embeddings of highly neighbor

and correlated item and user nodes. Meanwhile, The bor-
ders between similar nodes and unrelated nodes are referred
to as the boundary nodes. Previous studies [Abbasnejad et
al., 2020; Goyal et al., 2019; Wang et al., 2021c] have shown
that samples in boundary nodes are often discriminative in
revealing underlying data patterns, offering the potential for
improved model performance. Therefore, we also hope to in-
crease the divergence among those of boundary nodes. As
shown in Figure 3, given a positive pair of the user u (like u1)
and the clicked item i (i3), we first sort other neighbor item
nodes i′ (i4, i5) based on the distance metric between two
items i and i′. Items with lower distances are considered to
have higher correlation (similar nodes sim) and nodes with
higher distances are considered marginal nodes mar. The
numbers of similar nodes and marginal nodes are set as K1

and K2. Then, the additional loss term is defined as follows:
LLEC =∑
(u,i)∈N+

∑
sim∈S(i)

∑
mar∈M(i)

−
(
ωu,sim log σ

(
e⊤u esim

)
− ωu,mar

log σ
(
e⊤u emar

))
,

ωu,sim =
1

√
du + 1

√
dsim + 1

, ωu,mar =
1

√
du + 1

√
dmar

+ 1
,

(11)
where N+ denotes the positive pairwise training dataset, S(i)
is the set of similar nodes about node i, M(i) is the set of
marginal nodes about node i, and ωu,sim , ωu,mar are the nor-
malization coefficients. In particular, when sorting the items,
we filter out the items far enough away from the node i whose
distance is above a threshold θ to only preserve boundary
nodes inspired by [Wang et al., 2021c]. Here, we apply the
co-occurrence similarity as the distance metric between two
items, which is proportional to the number of users linked
to both two items. Note that, the co-occurrence similarity is
consistent with the idea of collaborative filtering [Wang et al.,
2020a; Chen et al., 2021]. Hence the loss can be effectively
adopted and added to common GCN-based collaborative fil-
tering models. The overall algorithm process of our LEC loss
can be found in Appendix.

With our proposed LEC, we finally derive the following
training objective for GCN-based recommendation models:

L = LCF + λLLEC , (12)

where LCF represents the original loss function of the GCN-
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based recommendation model like BPR loss in Equation 5,
and hyper-parameter λ is to balance the LEC loss.

3.3 Comparison with Existing Methods
Recently, several works in the field of GCNs have been pro-
posed to alleviate the over-smoothing problem. Here, we dis-
cuss the relations between our approach with them to provide
a more comprehensive understanding.
Residual Connection. Motivated by the success of
ResNet [He et al., 2016], the residual connection has been the
common sense to make GNNs go deeper and perform better,
like LT-OCF [Choi et al., 2021], LightGCN [He et al., 2020],
SGC [Wu et al., 2021], DeepGCN [Li et al., 2019], and GC-
NII [Chen et al., 2020c]. Taking GCNII as an example, it
incorporates initial node embeddings into the output of each
layer, which can be succinctly summarized as:

e(k) =ê(k) + α(e(0) − ê(k)), (13)

where ê(k) and e(0) are defined similarly to that in Equa-
tion 9. Intuitively, like our GMP approach, GCNII also per-
turbs the original node embedding ê(k) with another vec-
tor (e(0) − ê(k)) of the direction moving away from over-
smoothing point. The illustration of detailed embedding vec-
tor updating can be found at Appendix, which is considered to
be a hidden reason that GCNII can also prevent embeddings
from excessively converging to the over-smoothing point.
Normalization-based Methods. A proven way to reduce the
over-smoothing effect is to normalize node embeddings to
preserve the distinctiveness of embeddings during training.
EGNN [Zhou et al., 2021a] and Parinorm [Zhao and Akoglu,
2019] measure over-smoothing using Dirichlet energy and
Total Pairwise Squared Distance(TPSD) respectively and op-
timize a GCN within a constrained range of Dirichlet energy
and TPSD to preserve the distinctiveness of node embeddings
individually. Additionally, Differentiable Group Normaliza-
tion (DGN) [Zhou et al., 2020] and NodeNorm [Zhou et al.,
2021b] use node-wise normalization. Although they main-
tain the embedding distances between nodes to avoid exces-
sive similarity among global node embeddings in the opti-
mization process, these methods of optimizing node embed-
dings lack any directionality and can even introduce noise
that affects the performance of shallow GCN models. DGR
maintains node embedding distinctiveness while providing a
clear direction, which is to move away from over-smoothing
point. Moreover, its application to shallow GCN models also
leads to substantial improvements while normalization-based
methods lead to a performance decrease.
Topology-based Methods. Some other approaches propose
to modify the topological structure in each message pass-
ing layer to alleviate over-smoothing by randomly dropping
edges or nodes in graphs, such as DropEdge [Rong et al.,
2019] and AdaEdge [Chen et al., 2020a]. However, those ap-
proaches also damage the local topological structure around
each node to some extent, which is critical in recommenda-
tions for modeling collaborative signals. In contrast, our ap-
proach not only penalizes the tendency of node embeddings
approximating overly to be similar, but also maintains the
topological structure and similarities among neighbor nodes.

Consequently, our method yields a more stable performance
enhancement for recommendation. Another topology-based
model IMP-GCN [Liu et al., 2021] groups users with simi-
lar interests based on topological relationships and conducts
separate message passing for each group to alleviate over-
smoothing problem, which has the similar main idea with our
proposed LEC, encouraging similar nodes to have compara-
ble embeddings on the local graph.

3.4 Complexity Analysis

Actually, our approach is easy-to-use and model-free, which
can be exploited into various GCN-based recommendation
systems with a limited complexity cost. Assuming the orig-
inal LightGCN backbone, the computational complexity can
be represented as: O((Nu+Ni)d̄TK), where T is the dimen-
sionality of node embeddings, K is the number of graph con-
volutional layers, and d̄ is the average number of neighboring
nodes. After applying our DGR, the computational complex-
ity becomes: O((Nu + Ni)(d̄ + 1)TK). It can be observed
that DGR only brings a limited linear increase in computa-
tional complexity. As for the space complexity, DGR only
introduces additional (Ni+Nu)T parameters into the original
GCN backbone. Furthermore, our experiments will demon-
strate significant and robust improvements in DGR across
various datasets and recommendation systems.

4 Experiments
To verify the effectiveness of the proposed DGR, we con-
duct extensive experiments based on five public benchmark
datasets and report detailed analysis results in the section.

4.1 Experimental Setup

Datasets and Evaluation. Following many recent GCN-
based recommendation systems [He et al., 2020; Mao et
al., 2021; Yu et al., 2023], five public benchmark datasets
are used in our paper including Gowalla, Yelp2018, Movie-
Lens1M, Netflix and Douban-Book. These datasets vary in
domains, scale, and density. The statistics of the datasets can
be found in Appendix. We partitioned each dataset into train-
ing, and testing sets using a 4:1 ratio. Recall@K and Normal-
ized Discounted Cumulative Gain (NDCG)@K are chosen as
the evaluation metrics that are popular in the evaluation of
GCN-based recommendations.
Baseline Models. To demonstrate the generalizability, we
incorporate our DGR into five widely-use GCN-based rec-
ommendation models including LightGCN [He et al., 2020],
SGL [Wu et al., 2021], SimGCL [Yu and Qin, 2020],
XSimGCL [Yu et al., 2023] and MixGCF [Huang et al.,
2021]. In addition, we include two traditional recommenda-
tion models, BPRMF [Rendle et al., 2012] and NGCF [Wang
et al., 2019b]. The latest state-of-the-art models, IMP-GCN
and LayerGCN [Zhou et al., 2023], are also included, which
effectively mitigate the over-smoothing promblem in recom-
mendation systems.
Experimental Setting. The experimental implementation
details can be found in Appendix.
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Datasets Gowalla MovieLens1M Douban-Book Yelp2018 Netflix
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

BPRMF 0.1393 0.1155 0.2486 0.2727 0.1263 0.1032 0.0496 0.0400 0.1034 0.0779
NGCF 0.1602 0.1311 0.2594 0.2676 0.1509 0.1259 0.0593 0.0492 0.1056 0.0814

IMP-GCN 0.1837 0.1510 0.2793 0.3154 0.1599 0.1349 0.0649 0.0529 0.1091 0.0795
LayerGCN 0.1825 0.1502 0.2798 0.3085 0.1619 0.1363 0.0636 0.0515 0.1088 0.0787
LightGCN 0.1832 0.1542 0.2690 0.3014 0.1497 0.1257 0.0650 0.0532 0.0868 0.0615

LightGCN+DGR 0.1880 0.1556 0.2749 0.3065 0.1573 0.1308 0.0669 0.0545 0.0909 0.0652
Improv. 2.61% 0.92% 2.19% 1.69% 5.08% 4.06% 2.92% 2.44% 4.72% 6.02%

SGL 0.1785 0.1503 0.2342 0.2194 0.1511 0.1362 0.0672 0.0553 0.1054 0.0803
SGL+DGR 0.1823 0.1532 0.2414 0.2271 0.1625 0.1453 0.0695 0.0571 0.1105 0.0826

Improv. 2.13% 1.93% 3.07% 3.51% 7.55% 6.68% 3.43% 3.26% 4.84% 2.86%
SimGCL 0.1821 0.1528 0.2560 0.2835 0.1773 0.1562 0.0717 0.0592 0.1213 0.0882

SimGCL+DGR 0.1860 0.1573 0.2752 0.3091 0.1811 0.1601 0.0747 0.0616 0.1271 0.0943
Improv. 2.14% 2.95% 7.50% 9.03% 2.14% 2.50% 4.18% 4.05% 4.78% 6.92%

XSimGCL 0.1681 0.1388 0.2498 0.2669 0.1756 0.1590 0.0684 0.0562 0.1319 0.1014
XSimGCL+DGR 0.1811 0.1533 0.2778 0.3102 0.1828 0.1633 0.0726 0.0599 0.1365 0.1069

Improv. 7.73% 10.49% 11.21% 16.22% 4.10% 2.70% 6.14% 6.58% 3.49% 5.42%
MixGCF 0.1852 0.1579 0.2735 0.3025 0.1771 0.1606 0.0697 0.0571 0.1198 0.0858

MixGCF+DGR 0.1890 0.1604 0.2934 0.3306 0.1922 0.1730 0.0719 0.0592 0.1228 0.0900
Improv. 2.05% 1.56% 7.23% 9.29% 8.53% 7.72% 3.16% 3.68% 2.50% 4.90%

Table 1: Performance comparison of baseline models before and after integrating DGR.

Model LightGCN SGL SimGCL XSimGCL MixGCF
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

Baseline Model 0.1497 0.1257 0.1511 0.1362 0.1773 0.1562 0.1756 0.1590 0.1771 0.1606
Model+GMP 0.1533 0.1306 0.1575 0.1418 0.1786 0.1590 0.1777 0.1599 0.1807 0.1623

Improv. +2.40% +3.90% +4.24% 4.11% +0.73% +1.79% +1.20% +0.57% +2.03% +1.06%
Model+LEC 0.1522 0.1279 0.1511 0.1363 0.1790 0.1575 0.1814 0.1631 0.1914 0.1716

Improv. +1.67% +1.75% +0.00% +0.07% +0.96% +0.83% +3.30% +2.58% +8.07% +6.85%
Model+DGR 0.1573 0.1308 0.1625 0.1453 0.1811 0.1601 0.1828 0.1633 0.1922 0.1730

Improv. +5.08% +4.06% +7.54% +6.68% +2.14% +2.50% +4.10% +2.70% +8.53% +7.72%

Table 2: Performance comparison of GMP and LEC components in DGR on Douban-Book.

4.2 Overall Performance
Table 1 summarizes the comparison of baseline models be-
fore and after integrating the proposed DGR with the per-
centage of relative improvement at each metric. The main
observations are as follows:

(1) The baseline models incorporating DGR all exhibit per-
formance improvements on all datasets, while also achieving
state-of-the-art results. It demonstrates the effectiveness of
the DGR, which unlocks the potential of personalized recom-
mendation for GCN-based recommendation systems by mit-
igating the over-smoothing problem. In the vast majority of
cases, the five popular models with DGR significantly outper-
form competitive traditional and recent state-of-the-art mod-
els. Baselines and Baselines with DGR in Table 1 apply the
same layers of GCNs, which demonstrates that our proposed
DGR can significantly improve shallow GCN-based recom-
mendation models.

(2) Compared to all other models, DGR yields the sub-
stantial improvement for XSimGCL and SimGCL among

all datasets. In particular, XSimGCL with DGR achieves a
remarkable increase of 11.21% in Recall@20 and 16.22%
in NDCG@20 on the MovieLens1M. We believe that
XSimGCL and SimGCL employ the approach of adding
noise to node embeddings instead of using complex data aug-
mentation for graph self-supervised learning. This method
may not effectively leverage topological information in the
local graph, and introducing noise makes the model direc-
tionless. In contrast, DGR enables them to maintain distinc-
tiveness among all user and item embeddings under the guid-
ance of global topology while paying closer attention to the
local topological information of local user-item interactions,
leading to the enhanced performance.

(3) Comparing the performance on different datasets, DGR
exhibits the substantial average improvement on Movie-
Lens1M among all baseline models, which has the highest
density, at 2.7%. The DGR can improve recommendation
performance remarkably by slowing down its tendency to-
wards over-smoothing. Meanwhile, DGR also has stable im-
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Figure 4: Performance of LightGCN with and without the DGR
across a range of model depths. The orange line and blue line rep-
resent Recall@20 and NDCG@20, respectively. The solid line and
dashed line represent models with and without DGR, respectively.

provements on sparse datasets such as Yelp2018 with 0.13%
density. This is because DGR can effectively utilize the lim-
ited neighbors of each user (item) node to capture collabora-
tive signals by learning on the local graph.

4.3 Further Analysis of DGR
In this section, we provide more experimental analysis of our
proposed DGR for better understanding.
Ablation Study of DGR. We conduct the ablation experi-
ments on Douban-Book by individually applying GMP, LEC,
and DGR on different models. From Table 2, we can find that
both GMP and LEC contribute to the improvements of model
performance. The performance improvements provided by
DGR is greater than the sum of the performance improve-
ments from GMP and LEC, which implies that the synergis-
tic combination of these two components is better suited for
the desmoothing task in the context of recommendation. Ad-
ditionally, we observe that GMP leads to a more remarkable
performance improvement than LEC in LightGCN, SGL, and
SimGCL. However, this trend is reversed in XSimGCL and
MixGCF. We believe the primary reason is that the first three
models are already capable of effectively capturing collab-
orative information during the aggregation of neighboring
items(users), which makes global over-smoothing their per-
formance bottleneck. Meanwhile, the latter two models are
perceived as lacking the ability to capture collaborative sig-
nals from user-item interactions.
Case Study. The Row-diff is a metric to measure the degree
of over-smoothing, proposed by [Zhao and Akoglu, 2019],
where a lower row-diff score indicates a larger degree of over-
smoothing. Its calculation formula is as follows:

Row-diff
(
E(k)

)
=

1

n2

∑
i,j∈[n]

∥∥∥e(k)i − e
(k)
j

∥∥∥
2
, (14)

where E(k) is the node embedding matrix obtained after train-
ing k layers of GCN until convergence. In order to validate
the ability of DGR to mitigate over-smoothing, we separately
train baseline models and baseline models with DGR until
convergence to obtain a converged embedding matrix. The
row-diffs of node embeddings are computed respectively and
shown in Table 3. It is evident that the application of DGR
to the baseline models leads to a significant reduction in the
degree of over-smoothing.

Model LightGCN SGL SimGCL XSimGCL MixGCF

Baseline 2.68 2.61 2.65 2.32 2.38
Baseline+DGR 2.80 2.85 3.06 2.75 2.74

Table 3: Row-diffs of baseline models with and without DGR
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Figure 5: Parameter Analysis of α based on LightGCN.

Impact of Model Depth. Although the DGR significantly
enhances the shallow GCN-based recommendations as shown
in Table 1, further exploration is needed to understand its
desmoothing ability in deep GCN-based recommendations.
We evaluate the five models with and without DGR across a
range of model depths. We conduct these experiments on the
Douban-Book dataset. The results of LightGCN are shown in
Figure 4 while the results of other models can be found in Ap-
pendix. It is notable that models with DGR display a slower
decline in performance as the number of layers increases, in
contrast to those without DGR. This observation suggests that
DGR possesses a robust desmoothing capability, which can
effectively alleviate the detrimental effects of over-smoothing
on recommendation performance in deep models.
Impact of hyper-parameters. As mentioned in Equation 9,
the hyper-parameter α determines the extent to which all em-
beddings deviate from the over-smoothing point. It has a sig-
nificant impact on the model performance. Here, We take
LightGCN as the representation example to incorporate our
DGR model with varying α values on Douban-Book dataset
as shown in Figure 5, while the results of other models can be
found in Appendix. The optimal value of α varies across dif-
ferent layers. Therefore, we explore the optimal α separately
for each layer across a range of values, i.e., [0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

5 Conclusion
In this work, we proposed a general and easy-to-use
Desmoothing Framework for GCN-based Recommendation
Systems(DGR), to alleviate the over-smoothing problem in
GCN-based recommendation systems, thereby unlocking the
potential for personalized recommendation. We approached
this problem from both global and local perspectives. Specif-
ically, with the guidance of the global structure, we intro-
duced Global Desmoothing Message Passing(GMP), which
penalizes the tendency of node embeddings approximating
overly to be similar. In addition, we introduced Local Node
Embedding Correction (LEC) for the readout embeddings to
preserve the local collaborative relations between users and
their neighboring items in the local graph. Extensive exper-
iments based on five public datasets and five popular GCN-
based recommendation models have demonstrated the effec-
tiveness of our proposed DGR.
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